Specification in PDL with Recursion

Xinxin Liu and Bingtian Xue

xinxin,xuebt@ios.ac.cn Laboratory of Computer Science Chinese Academy of Sciences Beijing, China

Motivation

- specification logics
 - Propositional Dynamic Logic (PDL)
 - regular expressions
 - less expressive, but easy to understand
 - modal μ-calculus
 - fixed point
 - more expressive, but hard to understand and analyze: for example, repetition of traces has to be encoded into complex recursive properties

Our Work — Overview

- Extend PDL with simple maximum Fixed Points (disallow alternation) → PDL with recursion (rPDL)
 - Expressive power: (regular) PDL \longrightarrow rPDL \longrightarrow μ -calculus CTL, CTL* \longrightarrow rPDL with nesting
 - For structured LTS, rPDL (with nesting) is decomposable
 - Satisfiability problem: decidable in EXP-time w.r.t the size of the formula;
 - For simple formulas: polynomial in the size of the programs, exponential in the number of the sub-formulas.
 - Solving weak (branching) bisimulation equations of processes

Propositional Dynamic Logic (PDL)

- syntax of PDL
 - propositions or formulas
 - 1 tt, ff $\in \Phi$;
 - 2 if $\varphi, \psi \in \Phi$ then $\varphi \wedge \psi, \varphi \vee \psi \in \Phi$;
 - 3 if $\varphi \in \Phi$, $\alpha \in \Pi$, then $\langle \alpha \rangle \varphi$, $[\alpha] \varphi \in \Phi$.
 - programs
 - 1 Act ⊆ Π;
 - 2 if $\varphi \in \Phi$ then $?\varphi \in \Pi$;
 - 3 if $\alpha, \beta \in \Pi$ then $\alpha \cup \beta, \alpha; \beta \in \Pi$;
 - 4 if $\alpha \in \Pi$ then $\alpha^* \in \Pi$.

Enhance PDL → PDL with recursion (rPDL)

- Syntax
 - formula
 - 4. $X, \overline{X} \in \Phi$ (property identifier)
 - Declaration (Definition)

$$D ::= \{X_1 = \varphi_1, \dots, X_m = \varphi_m\}$$

- No variable is defined more than once in D
- Well-defined D is well defined if $\varphi_1, \ldots, \varphi_m$ are positive formulas w.r.t X_1, \ldots, X_m
- Well-defined declaration has maximum fixed point exists the weakest property

Enhance PDL → PDL with recursion (rPDL)

Examples

Semantics of rPDL

- $lue{}$ Semantics of formulas for a given environment ho
 - 1 $p \models_{\rho} tt$ holds for all $p \in S$;
 - $p \models_{\rho} \text{ff never holds};$
 - $3 p \models_{\rho} X \text{ iff } p \in \rho(X);$
 - 4 $p \models_{\rho} \overline{X}$ iff $p \notin \rho(X)$;
 - 5 $p \models_{\rho} \varphi \wedge \psi$ iff $p \models_{\rho} \varphi$ and $p \models_{\rho} \psi$;
 - 6 $p \models_{\rho} \varphi \lor \psi$ iff $p \models_{\rho} \varphi$ or $p \models_{\rho} \psi$;
 - 7 $p \models_{\rho} \langle \alpha \rangle \varphi$ iff there exists $q \in \mathbf{S}$ such that $(p, \alpha) \Longrightarrow_{\rho} q$ and $q \models_{\rho} \varphi$;
 - 8 $p \models_{\rho} [\alpha] \varphi$ iff whenever $(p, \alpha) \Longrightarrow_{\rho} q$ then $q \models_{\rho} \varphi$.

Semantics of rPDL

- lacktriangle Semantics of programs for a given environment ho
 - 1 $(p, a) \Rightarrow q \text{ iff } p \xrightarrow{a} q;$
 - 2 $(p, ?\varphi) \Rightarrow q$ iff p = q and $p \models \varphi$;
 - 3 $(p, \alpha \cup \beta) \Rightarrow q \text{ iff } (p, \alpha) \Rightarrow q \text{ or } (p, \beta) \Rightarrow q;$
 - 4 $(p, \alpha; \beta) \Rightarrow q$ iff there exists r with $(p, \alpha) \Rightarrow r$ and $(r, \beta) \Rightarrow q$;
 - [5] $(p, \alpha^*) \Rightarrow q$ iff there exist $n \ge 0, q_0, \dots, q_n$ such that $(q_i, \alpha) \Rightarrow q_{i+1}$ for $0 \le i \le n-1$ and $p = q_0, q_n = q$.

Semantics of rPDL

Semantics of D for a given environment ρ $D = \{X_1 = \varphi_1, \dots, X_m = \varphi_m\}$ defines an environment for the identifiers:

$$ho_{\max} =
u \sigma.
ho\{ \llbracket \varphi_1 \rrbracket \sigma / X_1, \ldots, \llbracket \varphi_m \rrbracket \sigma / X_m \}, \text{ where } \llbracket \varphi \rrbracket \sigma = \{ p \mid p \models_{\sigma} \varphi \}$$
 (There exists a unique maximal environment because of the monotonicity.)

 $p \models_{D} \varphi \text{ if } p \models_{\rho_{\text{max}}} \varphi$ $(p, \alpha) \Rightarrow_{D} q \text{ if } (p, \alpha) \Rightarrow_{\rho_{\text{max}}} q$

Expressiveness of rPDL

- \blacksquare rPDL \longrightarrow modal μ -calculus
- expressiveness of simple formulas
- ∗ CTL,CTL* → rPDL with nesting will be shown elsewhere

Syntax of μ -calculus (the version that allows simultaneous mutual recursive definitions)

$$F ::= \operatorname{tt} \left| \operatorname{ff} \left| X \right| \overline{X} \right| F \wedge G \left| F \vee G \right| \langle a \rangle F \left| [a] F \right|$$

$$\left| \operatorname{letmax} D \operatorname{in} F \right| \operatorname{letmin} D \operatorname{in} F$$

$$D ::= X_1 = F_1, \dots, X_n = F_n$$

Translation

$$\mathcal{T}(\varphi) \qquad = \quad \varphi \quad \text{when } \varphi \text{ is } \operatorname{tt}, \operatorname{ff}, X, \overline{X}$$

$$\mathcal{T}(\varphi \wedge \psi) \qquad = \quad \mathcal{T}(\varphi) \wedge \mathcal{T}(\psi) \quad \mathcal{T}(\varphi \vee \psi) \quad = \quad \mathcal{T}(\varphi) \vee \mathcal{T}(\psi)$$

$$\mathcal{T}(\langle a \rangle \varphi) \qquad = \quad \langle a \rangle \mathcal{T}(\varphi) \qquad \mathcal{T}(\langle ?\psi \rangle \varphi) \quad = \quad \mathcal{T}(\psi) \wedge \mathcal{T}(\varphi)$$

$$\mathcal{T}(\langle \alpha \cup \beta \rangle \varphi) \quad = \quad \mathcal{T}(\langle \alpha \rangle \varphi) \vee \mathcal{T}(\langle \beta \rangle \varphi)$$

$$\mathcal{T}(\langle \alpha ; \beta \rangle \varphi) \qquad = \quad \mathcal{T}(\langle \alpha \rangle \langle \beta \rangle \varphi)$$

$$\mathcal{T}(\langle \alpha^* \rangle \varphi) \qquad = \quad \operatorname{letmin} \, Y = \mathcal{T}(\varphi) \vee \mathcal{T}(\langle \alpha \rangle Y) \text{ in } Y$$

$$\mathcal{T}([a]\varphi) \qquad = \quad [a]\mathcal{T}(\varphi) \qquad \mathcal{T}([?\psi]\varphi) \quad = \quad \mathcal{T}(\overline{\psi}) \vee \mathcal{T}(\varphi)$$

$$\mathcal{T}([\alpha \cup \beta]\varphi) \qquad = \quad \mathcal{T}([\alpha]\varphi) \wedge \mathcal{T}([\beta]\varphi)$$

$$\mathcal{T}([\alpha^*]\varphi) \qquad = \quad \operatorname{letmax} \, Y = \mathcal{T}(\varphi) \wedge \mathcal{T}([\alpha]Y) \text{ in } Y$$

■ Theorem:

 $p \models_{\mathcal{D}} \varphi$ if and only if $p \in F[[etmax \ \mathcal{D}^{\mu} \ in \ \mathcal{T}(\varphi)]] \rho_0$,

- $ightharpoonup
 ho_0$ is an empty environment;
- $D^{\mu} = \{X_1 = \mathcal{T}(\varphi_1), \dots, X_m = \mathcal{T}(\varphi_m)\}, \text{ if } D = \{X_1 = \varphi_1, \dots, X_m = \varphi_m\}.$

Examples

■ CTL*: *EGFp* μ -calculus: $\nu X.\mu Y.\langle \bullet \rangle ((X \land p) \lor Y)$ rPDL: $X = \langle \bullet^*.?p \rangle X$ $\longrightarrow \cdots \longrightarrow \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots \longrightarrow X$ p, X p, X

- Simple formula
 - Simple formula: no \overline{X} , [] \longrightarrow [a]F
 - Simple declaration D: whenever $X = \varphi \in D$ then φ is simple.
- Simple formulas can express weak bisimulation (\approx) and other bisimulation (\sim , \approx_b , . . .) equivalent classes for a finite process p.

- lacktriangle weak bisimulation (pprox) equivalent classes

 - lacksquare $p \approx q$ if and only if $q \models_D X_p$

Translating a positive formula into a simple one

$$\begin{array}{lll} \mathcal{S}(\varphi) & = & \varphi & \text{when } \varphi \text{ is tt, ff, } X \\ \mathcal{S}(\varphi \wedge \psi) & = & \mathcal{S}(\varphi) \wedge \mathcal{S}(\psi) \\ \mathcal{S}(\varphi \vee \psi) & = & \mathcal{S}(\varphi) \vee \mathcal{S}(\psi) \\ \mathcal{S}(\langle \alpha \rangle \varphi) & = & \langle \alpha \rangle \mathcal{S}(\varphi) \\ \mathcal{S}([\mathbf{a}]\varphi) & = & [\mathbf{a}]\mathcal{S}(\varphi) \\ \mathcal{S}([\mathbf{a}]\varphi) & = & \mathcal{S}(\overline{\psi}) \vee \mathcal{S}(\varphi) \\ \mathcal{S}([\alpha \cup \beta]\varphi) & = & \mathcal{S}([\alpha]\varphi) \wedge \mathcal{S}([\beta]\varphi) \\ \mathcal{S}([\alpha;\beta]\varphi) & = & \mathcal{S}([\alpha][\beta]\varphi) \\ \mathcal{S}([\alpha^*]\varphi) & = & X_{[\alpha^*]\varphi} \end{array}$$

- Translating a positive formula into a simple one
 - if $X = \varphi \in D$ then $X = S(\varphi) \in D_s$ if $X_{[\alpha^*]\varphi}$ occurs in a right hand side of a definition in D_s , then $X_{[\alpha^*]\varphi} = S(\varphi) \land S([\alpha]X_{[\alpha^*]\varphi}) \in D_s$
 - Theorem:
 - $p \models_{D} \varphi$ if and only if $p \models_{D_{S}} S(\varphi)$
 - Every positive formula has an equivalent simple formula. Every well defined declaration has an equivalent simple declaration.

Decision problems

- Satisfiability of positive formulas
 - Translating into simple formulas
 - Decision procedure for satisfiability of simple formulas: consistency set
- Satisfiability of rPDL formulas

- saturated set Γ (set of formulas)
 - **1** whenever $\varphi \land \psi \in \Gamma$ then $\varphi \in \Gamma$ and $\psi \in \Gamma$;
 - **2** whenever $\varphi \lor \psi \in \Gamma$ then $\varphi \in \Gamma$ or $\psi \in \Gamma$;
 - 3 whenever $X \in \Gamma$ and $X = \varphi \in D$ then $\varphi \in \Gamma$.
- consistency set C (set of formula sets): $C \in 2^{\Phi}, \Gamma \in C$
 - Γ is saturated;
 - whenever $\varphi \in \Gamma$ then $\Gamma \models_{\rho^{\mathcal{C}}} \varphi$ LTS: $\langle \mathcal{C}, Act, \{ \stackrel{a}{\longrightarrow} | \ a \in Act \} \rangle$ $\Gamma \stackrel{a}{\longrightarrow} \Gamma'$ if: whenever $[a]\psi \in \Gamma$ then $\psi \in \Gamma'$ $\rho^{\mathcal{C}}(X) = \{ \Gamma \in \mathcal{C} \mid X \in \Gamma \}$

- **Theorem**: Let φ be a simple rPDL formula, D be a simple declaration. Then the following two conditions are equivalent:
 - there exists a consistency set \mathcal{C} and some $\Gamma \in \mathcal{C}$ such that $\varphi \in \Gamma$;
 - 2 there exists an LTS $\langle \mathbf{S}, Act, \{\stackrel{a}{\longrightarrow} \mid a \in Act \} \rangle$ such that $p \models_{\mathcal{D}} \varphi$ for some $p \in \mathbf{S}$.

- \blacksquare sub-formula of φ , D
- lacksquare sub(φ) has nothing to do with the size of programs in φ
- the cardinality of $\operatorname{sub}(\varphi)$ is much smaller than that of $\operatorname{FL}(\varphi)$ (the usual Fischer-Ladner Closure of φ)

- **Algorithm**: For a given simple formula φ with a simple declaration D, start from $\mathcal{C} = \{\Gamma \subseteq \operatorname{sub}(\varphi) \cup \operatorname{sub}(D)\}$ and LTS $\langle C, Act, \stackrel{a}{\longrightarrow} \rangle$. Do the following steps.
 - 1 For each $\Gamma \in \mathcal{C}$, check whether is saturated, all of which can be checked locally. If not, delete Γ from \mathcal{C} .
 - 2 Repeat the following until $\mathcal C$ does not decrease: If there exists $\Gamma \in \mathcal C$, $\exists \psi \in \Gamma$ such that $\Gamma \models_{\rho^{\mathcal C}} \psi$ does not hold, delete Γ from $\mathcal C$.
- the worst time complexity: exponential in the size of the formulas, but polynomial in the size of the programs

Decision problems: an application of rPDL

- **Example:** solving the process equation of weak bisimulation equivalence $C(x) \approx p$
 - $C(x) \approx p$ if and only if $C(x) \models_D \varphi_p$ (by results of simple formulas and simple declaration)
 - $C(x) \models_D \varphi_p$ if and only if $x \models_{D^d} W(C, \varphi_p)$ (by results of decomposition property [X. Liu and B.Xue, Decomposition of PDL and its extension])
 - $C(x) \approx p$ if and only if $W(C, \varphi_p)$ is satisfiable (using the decision procedure to decide this)

Decision problems: deciding satisfiability of rPDL formulas

- Similar as the usual decision procedure for PDL
- The worst case time complexity: exponential in the size of the formulas and the programs

Conclusion and future work

Conclusion

- rPDL strikes a good balance between expressiveness and ease of analysis;
- rPDL has a simple decision procedure for simple formulas, which is quite expressive.

Future work

- Model checking of rPDL
- Better decision procedure for satisfiability of rPDL formulas
- Tools for deciding satisfiability, and moreover equation solver (EQ)

■ Thanks.